

Section A: Section 1: TITLE OF THE PROJECT

The section aims at a clear identification of the project including its applications and their limits. Particular attention should be paid to the use of wording that may induce fears or unrealistic promises.

A1. Project title

Establishment of hepatic-patient derived organoids

A2. Acronym of the project (if any)

A3. Type of organoid

Organoid for basic research

Factoroid (organoid for bioproduction)

Organoid for pre-clinical research

Organoid for clinical research

Organoid for clinical use

Others

A4. Specify

Describe the usage of your planned organoid

A5. Name of the organoid (avoid minigut, minibrain, synthetic brain...)

Avoid minigut, minibrain, synthetic brain...

Adjacent -Hepatocellular carcinoma Organoids (a-HCCO)

A6. Purpose of the project

Describe the aim of the project including appropriate regulatory documents Compliance: brief description of compliance procedures, upload requested documents in next question.

A7. Upload appropriate regulatory documents**Section B: Section 2: SOURCE MATERIAL**

Critical elements for this section are: 1) stem cell metadata based on ATCC model (batch, structural, morphological and functional data, maintenance and preservation protocol), 2) collection declaration (declaration or authorization of activities for the conservation and preparation for scientific purposes of human body elements), mandatory for human samples, 3) monitoring of possible drifts of starting material, 4) regulatory documents and medical ethics if any (restrictions of use according to donor consent).

Section C: Does your research involve human material ?**C1. Does your research involve human material ?**

Yes
No

C2. Is the material obtained from volunteers ?

Yes
No

C3. An informed consent has been obtained ?

Yes
No

C4. Provide details of the informed content**C5. Is the volunteer a patient ?**

Yes
No

C6. Is the genetic identity at arrival known ?

Yes
No

C7. If starting material is obtained from a biopsy, are descriptors known ?

Descriptors : gender, age, anatomical regions, diagnosis, viral status....

Yes
No

C8. Please list descriptors

Gender, age, anatomical region, diagnostic, weight

C9. Does the promoter of the research have clinical data on the patient ?

Yes
No

C10. Is the laboratory authorized to prepare and conserve human body elements for scientific purposes ?

Yes
No

C11. Give details and references of the collection declaration

DC-2015-2565

Section D: Is the starting material a cell line ?**D1. Is the starting material a cell line ?**

For example, indifferent origin, iPSCs, ATCC, ESC...

Yes
No

D2. Is the genetic identity at arrival known?

Yes
No

D3. Please specify (DNA sequence, SNPs, PCR, STR, CGH array...)**D4. Is there a genetic quality control (karyotype, STR, PCR...)?**

Yes
No

D5. Please describe the procedure for genetic quality control

You may give an URL to a file describing the protocol

D6. Is the cell line functionally validated ?

For example, differentiation test for pluripotency of iPSCs, permeability tests for epithelial cells etc...

Yes
No

D7. Please describe the procedure

You can indicate an URL to a file describing the procedure

D8. Is the cell identity validated after X passages?

Yes
No

D9. Specify the number of passages (X)

D10. Are cell type markers identified ?

Yes

No

D11. List the different markers used

D12. Is the number of passages at arrival known ?

Yes

No

D13. Is the number of possible, or required, passages before genesis of organoids defined?

Yes

No

D14. Are the storage conditions known?

Yes

No

D15. Please describe preservation protocol (culture, freezing, thawing protocol, storage modalities)

D16. Does the material contain mutations (genetic disease)?

Yes

No

D17. Is the sanitary status known?

Yes

No

D18. Please give details tests (mycoplasma, bacteriological, fungal

Section E: Is the starting material primary cells of patients?

E1. Is the starting material primary cells of patients?

Yes
No

E2. Is the genetic identity at arrival known?

Yes
No

E3. Please specify (DNA sequence, SNPs, PCR, STR, CGH array...)

E4. Is there a genetic quality control (karyotype, STR, PCR...)?

Yes
No

E5. Please describe the procedure for genetic quality control

You may give an URL to a file describing the protocol

E6. Is the cell line functionally validated ?

For example, differentiation test for pluripotency of iPSCs, permeability tests for epithelial cells etc...

Yes
No

E7. Please describe the procedure

You can indicate an URL to a file describing the procedure

E8. Is the cell identity validated after X passages?Yes No **E9. Specify the number of passages (X)** (dotted line separator)**E10. Are cell type markers identified ?**Yes No **E11. List the different markers used**

CK19 (bile ducts marker), CD44 (sinusoids and portal areas marker), Ki67, Albumin, CYP3A4 by RT-qPCR and IF staining

E12. Is the number of passages at arrival known ?Yes No **E13. Is the number of possible, or required, passages before genesis of organoids defined?**Yes No **E14. Are the storage conditions known?**Yes No

E15. Please describe preservation protocol (culture, freezing, thawing protocol, storage modalities)

3 wells in 1mL in freezing solution (10%DMSO, 90% FBS) and frozen gradually, decreasing temperature in MisterFrosty (-1°/min) to -80°C before long-term storage at -150/196°C

E16. Does the material contain mutations (genetic disease)?Yes No **E17. Is the sanitary status known?**Yes No **E18. Please give details tests (mycoplasma, bacteriological, fungal**

Mycoplasma test

Section F: Are the cell culture conditions precisely described ?**F1. Are the cell culture conditions precisely described ?**Yes No **F2. Are the culture media well defined ?**Yes No **F3. Provide extensive culture conditions**

Let provide : Composition of culture media, nature, origin and quantities of supplements used -e.g. glucose, serum, antibiotics, growth factors , media changes etc. or an URL pointing to a file with the media descriptions

Organoid initiation Medium (Stemcell technologies) for 2 weeks prior to first passaging, then newly formed domes were incubated with complete organoid medium (Advanced DMEM/F12 + 10mM HEPES, 50U/mL Penicillin/Streptomycin, 2mM L-Glutamine) supplemented with 50% (vol/vol) of Organoid Growth Medium (Stemcell technologies). At Day 5 (after proliferation), Organoids were differentiated during 10 days with addition of Organoid Differentiation Medium (Stemcell Technologies).

F4. Are the nature and treatment of the supports well described?

Yes
No

F5. Provide details of the culture supports

[Large empty text area for providing details of culture supports]

F6. Are the seeding conditions well described?

Yes
No

F7. Is the frequency of media changes defined ?

Yes, every 2-3 days

[Large empty text area for defining media change frequency]

F8. Are O2/CO2 concentrations given?

Yes
No

F9. Provide details of the culture conditions

You can provide an URL pointing to a file or a folder with the seeding conditions

3 wells from 1 well for a passage

[Large empty text area for providing details of culture conditions]

Section G: What are the storage conditions of the lines or cells**G1. Are the procedure of cell banking described?**

Yes
No

G2. Are there cell master banks?

Yes

No

G3. Describe the procedures for the cell master banks and drift controls

Master banks at the CRB with double certification ISO 9001 and ISO 20387

G4. Are there cell working banks?

Yes

No

G5. Describe protocols and drift control for working banks**G6. Are storage conditions indicated?**

Yes

No

G7. Describe freezing and thawing protocol

2-3 wells in 1mL in freezing solution (10%DMSO, 90% FBS) and frozen gradually, decreasing temperature in MisterFrosty (-1°/min) to -80°C before long-term storage at -150/196°C

G8. Are the storage modalities given?

Yes

No

G9. Please specify storage modalities

Long-term storage at -150/196°C

Section H: Section 3: MANUFACTURING OF THE ORGANOID

Critical elements in this section are : 1) Differentiation protocol and organoid generation (table of differentiation factors, timelines, culture protocols, purification protocols, if necessary, maintenance and preservation protocols), 2) Design and development of master organoid bank and working organoid bank, 3) Monitoring of the possible drift of organoids (genetic, proteic post translationnal modifications, metabolism, others biomarkers).

Section I: Does the project include 2D differentiation ?**I1. Does the project include 2D differentiation ?**

Yes
No

I2. Provide details on culture media

Give informations about nature, origin, supplements used (e.g. growth factors glucose, serum, antibiotics, CO2/O2 concentrations ...)

I3. Describe sequence and duration of differentiation treatments**I4. Are culture supports treated ?**

Yes
No

I5. Describe treatment of support, seeding conditions and frequency of media changes

I6. Is there a quality control for the differentiation process ?

Yes

No

I7. Provide details (e.g. morphology, material homogeneity, max and min confluence, proliferation, functional test, monitoring of markers, possibly sorting, mortality rate)

Section J: Does the project includes generation of (3D) organoids ?

J1. Does the project include generation of (3D) organoids?

Yes

No

J2. Provide details on culture media, nature, origin, supplements used (e.g. growth factors glucose, serum, antibiotics, CO2/O2 concentrations ...)

Organoid initiation Medium (Stemcell technologies) for 2 weeks prior to first passaging, then newly formed domes were incubated with complete organoid medium (Advanced DMEM/F12 + 10mM HEPES, 50U/mL Penicillin/Streptomycin, 2mM L-Glutamine) supplemented with 50% (vol/vol) of Organoid Growth Medium (Stemcell technologies). At Day 5 (after proliferation), Organoids were differentiated during 10 days with addition of Organoid Differentiation Medium (Stemcell Technologies). Ambient CO2/ 5% O2

J3. Describe sequence and duration of differentiation treatments

After day 5 of proliferation state, change media to Organoid differentiation medium for 10 days

J4. Are culture supports treated?

Yes
No

J5. Describe support treatments, seeding conditions and frequency of media changes

Treated Costar (ref 3548) 48 wells plates. Media changes every 2-3 days

J6. Is there a quality control for the differentiation process?

Yes
No

J7. Provide details (e.g. morphology, material homogeneity, max and min confluence, proliferation, functional test, monitoring of markers, possibly sorting, mortality rate)

Morphology change and monitoring markers with RT-qPCR

Section K: Does organoid generation make use of matrices ?**K1. Does organoid generation make use of matrices ?**

Yes
No

K2. Describe the nature of the matrix (matrigel, hydrogels, hyaluronic acid, human decellularized matrix etc.)

Matrigel Growth Factor Reduced basement membrane Matrix (Corning)

K3. Give matrix concentration

100% Matrigel (concentration depends on lot number)

K4. Let provide detail preparation method (temperature, polymerization time, drop or layer structure, etc.)

48 well plate 25µL drop per well or 24-well plate 50µL drop per well and 10 minutes polymerization at 37°C

K5. Give seeding density per matrix volume unit

3 wells from 1 well for a passage; 3 wells in a a cryovials

K6. Specify volume and number of drops of matrix per unit area in the culture medium

48 well plate 25µL drop per well or 24-well plate 50µL drop per well

K7. Specify amount of medium depending on the size of the well

For 48 well plate 250µL or 24-well plate 500µL of medium per well

K8. Describe matrix dissociation method for organoid recovery

Mechanical dissociation using cold Gentle Cell Dissociation Reagent (GCDR, stemcell technologies). Matrigel domes were pipetted 20 times in GCDR in order to fragment organoids and dissolve Matrigel. Cold DPBS was added to dilute at 1:2 and then centrifugated 5min

K9. Describe method of dissociation of organoids for their expansion

Mechanical dissociation using Advanced DMEM/F12 + 10mM HEPES, 50U/mL Penicillin/Streptomycin, 2mM L-Glutamine supplemented with 1% BSA (in sterile water) Matrigel domes were pipetted 20 times in GCDR in order to fragment organoids and dissolve Matrigel. Cold DPBS was added to dilute at 1:2 and then centrifugated 5min. 3 wells from 1 well for 1 passage.

Section L: Does the culture take place on solid 3D support ?**L1. Does the culture take place on solid 3D support (example: mineral support for bones, support for liquid-gas interfaces) ?**

Yes
No

L2. Describe preparation method of the 3D solid support (composition of the medium to be freeze-dried, freeze-drying conditions)**L3. Give details on seeding method**

L4. List biocompatible materials used (PDMS, COC, Silicon, etc.)

L5. Indicate chip design (provide a map)

L6. Give the physical characteristics of the chip

Section M: Does the organoid grow in suspension (self-organization) ?

M1. Does the organoid grow in suspension (self-organization)?

Yes

No

M2. Specify type of container

M3. Describe nature and protocol of the agitation

M4. Indicate nature and concentration of matrices**Section N: Does the culture include multiple cell types ?****N1. Does the culture include multiple cell types ?**

Yes
No

N2. Describe the sequence of co-culturing and adaptation of co-culture media**N3. Indicate the proportions of cell types****Section O: Section 4: ORGANOID CHARACTERIZATION**

The detailed characterization is project dependent and should be carried out in line with the proposed use of organoid (research, bioproduction, preclinical and clinical studies); however, some standards emerge: 1) omics for structural characterisation, 2) imaging for morphology, 3) specific functional readouts depending of the foreseen use of organoid

Section P: Is there morphological/structure characterization ?**P1. Is there morphological/structure characterization ?**

Yes
No

P2. Describe appearance, size, shape [circularity, tubularity, regularity of contour (budding)]

Proliferation state: round organoids with cystic growth appearance and defined contours, size between 20-100 μ m

Differentiation state (Day 15): presence of clarified cells in a-HCCO, round organoids more compact and opaque, size between 50-200 μ m

P3. Evaluate opacity/refringency.

Differentiation state, yes opaque and less during proliferation state

P4. Quantify intra and inter-organoid homogeneity

P5. Develop expected morphological, architectural and ultrastructural features, organization of cell types (identity, proportions, distribution)

Morphologic features similar to the tissue of origin with the presence of clarified cells in a-HCCO

Section Q: Is there molecular characterization ?

Q1. Is there molecular characterization ?

Yes
No

Q2. Give elements of genomics, transcriptomics, metabolomics, proteomics

Proliferation state: CD44 by RT-qPCR at Day 5, GATA4, CK19, Ki67, F-Actin by IF

Differentiation state: CYP3A4, Albumin, Ki67, CD44 and LGR5 by RT-qPCR at Day 15, Decrease of GATA4 and Ki67, increase of Album by IF

Q3. Indicate expected specific molecular markers, epigenetic characteristics**Section R: Is there functional characterization ?****R1. Is there functional characterization ?**

Yes
No

R2. What are qualitative and (if possible) quantitative functional characteristics**R3. If treatments are done, detail treatment protocol , response to treatments (pharmacological, chemical, physical, hormonal, etc.), and evaluation (quantitative or qualitative)**

Section S: Are traceability and organoid drift evaluated ?

S1. Are traceability and organoid drift evaluated ?

Yes

No

S2. Describe how traceability of components is evaluated (batches, suppliers etc., environments, complements)

Yes, traceability of every components (batches number, expiration dates, etc)

S3. Indicate criteria for traceability of conditioned media (drift of cells used for conditioning, control of lines as for those at the origin of the organoid), control of at least one of the growth factors)

Yes, traceability of every components used for conditioned media (batches number, expiration dates, etc)

S4. Describe qualitative drift criteria (morphological, structural, functional, molecular, etc.) specific to each organoid. Specify indices if applicable

Morphological and structural by HES, IF markers and RT-qPCR markers

S5. How is robustness evaluated (same starting cells, same organoid). Specify indices if applicable

Section T: Section 5: USE OF ORGANOID

The critical element in this section is the robustness of the preparation and characterization of the organoid. To anticipate further use of organoids from basic to development of innovative applications (for instance, the use of Good Laboratory practices will facilitate the transition from basics to preclinical research).

T1. What is the domain of application of the organoid ?

Basic research	<input checked="" type="checkbox"/>
Bioproduction	<input type="checkbox"/>
Preclinical research (Pharmacology, toxicology, ...)	<input type="checkbox"/>
Clinical research (personalized, predictive and regenerative medicine, transplantation....)	<input type="checkbox"/>
Other	<input type="checkbox"/>

T2. Are GLP (good laboratory practice) required for organoid production?

Yes	<input checked="" type="checkbox"/>
No	<input type="checkbox"/>

T3. Give details for GLP

T4. Are GMP (good manufactory practice) required for organoid production ?

Yes	<input type="checkbox"/>
No	<input type="checkbox"/>

T5. Give details for GMP

T6. Indicate functional similarity criterion between the organoid and the mimicked organ (battery of controls to be performed with target values)

T7. Is the organoid used for preclinical development of a drug candidate (IND file) ?

Yes
No

T8. Indicate the number of usable passage for drug candidate

T9. Is the organoid used to define predictive signatures of responses (companion test)?

Yes
No

T10. Indicate the number of usable passages for companion test

T11. Is the organoid used to validate a care protocol (specific patient) on a cohort: choice of a therapy

Yes
No

T12. Indicate the number of usable passages for care protocol

T13. Is the organoid used for Domain 1: Care protocol (specific patient) ? (validation of the protocol of use of the organoid for the orientation of the therapeutic choice)

Yes
No

T14. Specify process for GMP certification, total traceability of the components, qualification of the components

T15. Give criterion of similarity between the organoid and the biopsy

T16. Is the organoid used, for Domain 2: Use in regenerative medicine (same as cell and tissue therapies) ?

Yes

No

T17. Specify process for GMP certification, total traceability of the components, qualification of the components

T18. Specify functionality criteria, safety (Derivation of biological material and evaluation of the risk of cancer)

T19. Specify others usages of organoid**Section U: END OF SURVEY**

This is the last section of this survey.

You can use the "Resume later" button at the top-right of the screen to save your answers and come back to this form later.

If you are done, you can press the "Submit" button, you will then be able to print your answers.

Your answers were registered.

Dont forget to print your answers.